翻訳と辞書 |
Monk's formula : ウィキペディア英語版 | Monk's formula In mathematics, Monk's formula, found by , is an analogue of Pieri's formula that describes the product of a linear Schubert polynomial by a Schubert polynomial. Equivalently, it describes the product of a special Schubert cycle by a Schubert cycle in the cohomology of a flag manifold. Write ''t''ij for the transposition ''(i j)'', and ''s''i = ''t''i,i+1. Then 𝔖sr = ''x''1 + ⋯ + ''x''r, and Monk's formula states that for a permutation ''w'',
where is the length of ''w''. The pairs (''i'', ''j'') appearing in the sum are exactly those such that ''i'' ≤ ''r'' < ''j'', ''w''i < ''w''j, and there is no ''i'' < ''k'' < ''j'' with ''w''i < ''w''k < ''w''j; each ''wt''ij is a cover of ''w'' in Bruhat order. ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Monk's formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|